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What is cancer immunotherapy?

Cancer immunotherapy consists of multiple approaches that harness and 
enhance the innate powers of the immune system to fight the disease. It is 
currently viewed as one of the most promising forms of cancer treatment with 
12 cancer immunotherapies approved in recent years. In 2018, the Nobel Prize in 
Medicine was awarded to two researchers in the field.

Cancer immunotherapies can be divided into four major categories:

– Cytokines/immunomodulation agents

– Monoclonal antibodies

– Cell‑based therapies

– Oncolytic viruses

Though monoclonal antibodies currently represent the largest class of 
commercialized cancer immunotherapies, cell‑based therapies are rapidly making 
headway. This class of personalized therapies involves collecting immune cells 
from an individual, engineering them to recognize and kill cancer cells, before 
culturing, and reintroducing them into the same individual.

Immune cell‑mediated tumor cell killing can involve components of both the 
innate and adaptive immune systems (Figure 1), including:

– Natural killer (NK) cells

– Cytotoxic T cells (MHC‑dependent)

– Antibodies secreted by B lymphocytes

– Engineered antibodies such as bispecific antibodies and bispecific T cell
engagers (BiTEs)

– Genetically engineered T cells targeting specific tumor antigens (for example,
CAR‑T, MHC‑independent)

– Macrophage‑mediated phagocytosis

How can the immune 
system be harnessed to 
target tumors?
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Figure 1. Various immunotherapy tumor-targeting schemes.

The need for a novel cancer immunotherapy assay
The most significant challenge faced by cancer immunotherapy researchers 
is the inability to predict treatment efficacy and response. While many 
methods have been developed to screen and evaluate the efficacy of immune 
cell‑mediated killing, there is a need for a more robust in vitro assay to accurately 
predict the in vivo behavior of therapies. The ideal assay should be objective, 
simple to perform, provide quantitative kinetic results, and mimic physiologically 
relevant conditions. Other established methods, such as flow cytometry, can then 
provide extra data regarding immune cell phenotype, activation, and function.

The most commonly used method for measuring immune cell‑mediated killing 
is the release assay, where effector cell‑mediated disruption of the target cell 
membrane results in leakage of its cytoplasmic contents into the culture medium. 
Endogenous biomolecules (such as lactate dehydrogenase) or previously added 
exogenous labels (such as the radioisotope 51Cr) that leak into the media are 
then measured as an indirect readout of the damage caused by effector cells. 
Alternative endpoint methods include ELISA‑based granzyme measurement and 
morphometric analyses by microscopy. While the data provided by these assays 
help piece together an understanding of different facets of immune cell‑mediated 
killing, it is important to note that the parameters being reported often do not 
correlate with target cell killing efficacy in vivo.
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xCELLigence real‑time cell analysis

Agilent xCELLigence real‑time cell analysis (RTCA) instruments allow users to:

– Measure quantitative, real‑time kinetics with exquisite sensitivity

– Real‑time cytolysis of target cells are measured at low
effector‑to‑target ratios

– Easily study diverse effector cells and molecules

– Measure cytotoxic effects of CAR‑T cells or monoclonal antibodies,
optimize potency of combination therapies, measure off‑target effects, and
much more

– Conduct experiments in label‑free conditions

– Measure cytotoxicity with no 51Cr, luciferase, or dyes

Thousands of xCELLigence instruments have been placed globally, resulting in 
more than 4,500 xCELLigence publications in peer‑reviewed journals.

xCELLigence RTCA technology is being used extensively for cancer research in 
applications that include, but are not limited to:

– Compound‑mediated cytotoxicity

– Cell‑mediated cytotoxicity

– T cells

– NK cells

– CAR T cells

– Macrophages

– Antibody‑dependent cell‑mediated cytotoxicity (ADCC)

– Bispecific antibodies

– Bispecific T cell engagers (BiTEs)

– Checkpoint inhibitors

– Combination therapy

– Tumor microenvironment (cell–cell interactions)

– Cell adhesion/spreading

– Receptor activation

– Oncolytic viruses

– Autophagy

– Solid tumor killing assays

– Liquid tumor killing assays

– Immune cell activation

– Apoptosis

– Inflammation

Diverse cancer 
immunotherapy applications



7

xCELLigence RTCA instruments use gold biosensors embedded in the bottom 
of specialized microplate wells (Agilent E‑Plates) to noninvasively monitor cell 
status including cell number, cell size, and cell‑substrate attachment quality. The 
major distinguishing features of this technology include enhanced sensitivity, the 
exclusion of labels, and kinetic measurement of cell health/behavior.

Convenient and simple workflow
– Plate target cells, add effector cells, and start reading.

– Generate real‑time killing curves for multiple conditions simultaneously,
spanning seconds to days.

– Read an entire 96‑well plate in 15 seconds and run up to six plates
independently, with no scheduling conflicts.

Figure 2. Overview of the Agilent xCELLigence RTCA assay.

The gold biosensors in each well of Agilent electronic microplates (E‑Plates) 
cover ~75% of the bottom surface area. The circular biosensors in each well 
of an E-Plate are linked to strands that form an interdigitating array (Figure 3). 
This proprietary design enables large populations of cells to be monitored 
simultaneously. The biosensors detect cellular impedance as cells adhere to 
and proliferate on the E‑Plates, providing an extremely sensitive readout of cell 
number, cell size/morphology, and cell‑substrate attachment quality in real time.
A B C

Figure 3. Biosensors measure cellular impedance on Agilent E-Plates. (A) Photograph of a single 
well in an E-Plate. Though cells can also be visualized on the gold biosensor surfaces, the region 
in the middle of the well facilitates microscopic imaging. (B) Crystal violet-stained human cells, as 
viewed in a compound microscope. (C) Immunofluorescence microscopy.

How does the xCELLigence 
real-time cell analysis 
assay work?

Step 1

Step 2

Step 3

Step 4

Adherent
target cells

+ Nonadherent
effector cells

Biosensors Adherent target cells (such as tumor cells) are first seeded 
into Agilent E-Plate wells. The biosensor signal, also known 
as Cell Index, increases as cells attach and proliferate, then 
plateaus as cells approach 100% confluence.

When added subsequently, nonadherent effector cells (that 
is, immune cells) in suspension do not cause signal changes 
due to lack of adherence to the gold biosensors.

If effector cells induce the destruction of the target adherent 
tumor cells, the corresponding cytolytic activity can be 
sensitively and precisely detected.

Using an intuitive graphical interface designed specifically for 
the immuno-oncologist, the RTCA Software Pro 
Immunotherapy Module monitors cell killing in real time.

Measuring cellular impedance 
with E-Plates
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The impedance caused by adherent cells is reported using a unitless parameter 
called Cell Index (CI), where:

CI = 
(Impedance at n) – (Impedance without cells)

(Nominal impedance constant) 

Figure 4 illustrates an example of a real‑time impedance trace throughout the 
course of setting up and running an apoptosis experiment:

1. Rapid increase due to cell adhesion: For the first few hours after cells have
been added to a well, there is a rapid increase in impedance, which is caused
by cell attachment and spreading.

2. Slow increase due to cell proliferation: If cells are subconfluent after the
initial attachment stage, they will start to proliferate, causing a gradual yet
steady increase in CI.

3. Plateau due to cellular confluence: When cells reach confluency, the CI value
plateaus, reflecting the fact that the electrode surface area accessible to bulk
media is no longer changing.

4. Decrease due to cell death/detachment: The addition of an apoptosis inducer
at this point causes a decrease in CI back to zero. This is the result of cells
rounding then detaching from the well bottom. While this generic example
involves addition of the apoptosis inducer at the point of cellular confluence,
impedance‑based assays are flexible and can interrogate a wide variety of
phenomena across the full spectrum of cell densities.

Figure 4. Generic real-time impedance trace for setting up and running an apoptosis assay. Each 
phase of the impedance trace, and the cellular behavior it arises from, is explained in the text.
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To control the temperature, humidity, and atmospheric composition of RTCA 
assays, xCELLigence instruments are housed inside standard tissue culture 
incubators or hypoxia chambers, except for the HT model (Figure 5). The 
instruments connect through a cable with analysis and control units that are 
housed outside the incubator. User‑friendly software allows for real‑time control 
and monitoring of the instrument, including real‑time data display and analysis 
functions.

Of the nine xCELLigence RTCA instruments, those best suited for immunotherapy 
assays are the dual purpose (DP), single plate (SP), multiple plates (MP), 
high throughput (HT), and eSight models (Table 1). While each instrument 
monitors cell number, cell size, and cell‑substrate attachment quality through 
cellular impedance in an identical manner, they differ from one another in plate 
configuration and throughput. The DP model has the additional capability to 
quantitatively monitor cell invasion/migration by using a specialized plate that 
functions as an electronic Boyden chamber. The eSight incorporates imaging 
in three colors, plus brightfield. Finally, though the HT model can be run as a 
standalone instrument, four of these can be linked to a single control unit to 
provide a total of 1,536 wells. HT instruments can also be integrated with a 
robotic liquid handler to maximize throughput.

Figure 5. An Agilent xCELLigence RTCA eSight instrument and its control unit are housed inside 
and outside an incubator, respectively.

xCELLigence instruments 
for immunotherapy

www.ols-bio.com
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Immunotherapy  
Applications

Dual 
Purpose  
(DP)

Single  
Plate  
(SP)

Multiple 
Plates  
(MP)

High 
Throughput  
(HT) eSight

Applicable to both liquid and solid tumor target cells

Cell-mediated cytotoxicity

ADCC

Checkpoint inhibitors

Combination therapies

Antibody-drug conjugates

Immune cell activation

Cell invasion and migration

Live cell imaging

Specifications

Format 3 × 16 wells 1 × 96 wells 6 × 96 wells 1 × 384 wells

3 × 96 wells 
impedance

5 × 96 wells 
imaging

Maximum throughput 48 wells 96 wells 576 wells

Up to  
4 × 382 wells 
(1,536 wells 
total)

288 wells 
impedance

Up to 480 wells 
total for imaging

Table 1. Overview of Agilent xCELLigence RTCA instruments.
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Though the innate and adaptive branches of the immune system are typically 
described as being distinct and separate from one another, they often work 
in concert to afford protection and combat diseases. When a pathogen is 
encountered, cells of the innate immune system typically release cytokines that 
cross‑talk with components of the adaptive immune system, causing them 
to expand and become activated. Many cells involved in the innate immune 
response (including NK cells, neutrophils, and eosinophils) also express CD16 
(Fc receptor), which is a low‑affinity receptor for immunoglobulins such as 
IgG. Immunoglobulin binding by CD16 targets innate immune cells to the 
immunoglobulin‑bound target cell and triggers target cell destruction. This 
prophylactic mechanism is known as antibody‑dependent cell‑mediated cytolysis 
(ADCC) and is the basis of many monoclonal antibody therapies.

As shown in Figures 6 and 7, scientists have used the xCELLigence platform 
to measure the ability of mononuclear cells (MNCs) from blood to kill different 
breast cancer cell lines in the presence or absence of trastuzumab (also known 
as Herceptin). Trastuzumab recognizes the tumor cell through its antigen (HER2), 
resulting in the specific killing of the tumor cells. 

Figure 6. CI values are proportionally reduced with increasing effector-to-target (E:T) ratios in 
the presence of trastuzumab. BT474 clone five cells were maintained for 26 hours, then treated 
with media alone (control) or with media plus mononuclear cells (MNCs) isolated from human 
blood (A). Cells were treated in an identical fashion in (B) except for the inclusion of 0.1 μg/mL 
trastuzumab. CI values were normalized at the time of addition. Blue represents growth with no 
MNCs (control) while green, orange, purple, and red represent growth in the presence of MNCs 
at E:T ratios of 0.5:1, 1:1, 2:1, and 6:1, respectively. Vertical dashed lines indicate the 16 hour 
window of time after treatment used to determine AUC values. Normalized CI values are plotted in 
15-minute increments as the average of three replicates with the standard deviation. This figure 
has been reproduced with permission from: Understanding Key Assay Parameters that Affect 
Measurements of Trastuzumab-Mediated ADCC Against Her2 Positive Breast Cancer Cells. 
Kute, T. et al. Oncoimmunology. 2012 Sep 1, 1(6), 810–821.15

Using xCELLigence to 
study antibody-dependent 
cell-mediated cytolysis 
(ADCC)
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Figure 7. Natural killer cells exhibit the greatest ADCC activity among subpopulations of 
mononuclear cells. MNCs were tested for ADCC killing effect (A) or were separated into 
subpopulations, then tested. (B) NK cells, (C) monocytes, (D) B cells, (E) T cells. Green lines 
represent the control, blue shows 0.1 µg/mL of trastuzumab alone, violet shows MNCs or 
subpopulations at E:T = 6:1, and red shows MNCs or subpopulations at E:T = 6:1 in the presence 
of 0.1 µg/mL trastuzumab. The flow cytometry results showing the distribution of immune 
subtypes among purified cells and MNCs are given in the table. This figure has been reproduced 
with permission from: Understanding Key Assay Parameters that Affect Measurements 
of Trastuzumab-Mediated ADCC Against Her2 Positive Breast Cancer Cells. Kute, T. et al. 
Oncoimmunology. 2012 Sep 1, 1(6), 810–821.15
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The therapeutic efficacy of the ADCC technique is decreased by expression of the 
CD16 antibody receptor on some, but not all, immune cells. In particular, cytotoxic 
and helper T lymphocytes do not express CD16 and, therefore, are not recruited 
to antibody‑coated cells. To circumvent this constraint and mobilize the full 
capacity of the adaptive immune response against tumors, bispecific antibodies 
have been engineered to simultaneously (1) bind specific antigens on the surface 
of tumor cells to (2) tether and activate cytotoxic and helper T cells by binding 
the CD3 receptor expressed on their surface. This approach has the advantage of 
bypassing MHC‑mediated activation of T cells and has the potential to target any 
antigen expressed on the surface of tumor cells. Though multiple variations of 
bispecific antibodies have been studied, BiTEs stand out as especially promising. 
BiTEs targeting the CD19 antigen on B cell malignancies were awarded 
"Breakthrough Therapy” status by the FDA.

Figure 8 exemplifies how the xCELLigence RTCA can be utilized to characterize 
BiTEs through the killing of adherent PC3 prostate cancer cells by PBMCs. The 
study is performed in the presence of a BiTE targeting the EpCAM receptor 
(which is expressed on the surface of most cancer cells of epithelial origin, 
including PC3 cells). 

Data show that in the absence of BiTE treatment, PBMCs displayed no cytolytic 
activity at the E:T ratios tested in this experiment. At 1 μg/mL anti-EpCAM/CD3 
BiTE and varying E:T ratios, the CI decreases in a dose‑dependent manner, 
representing PBMCs killing PC3s. At a PBMC:PC3 ratio of 10:1, EpCAM/CD3 BiTE 
increases killing efficacy in a dose-dependent manner. Though PC3 cell killing is 
stimulated at the lower BiTE concentrations, the killing of PC3 cells is delayed. 
Normalized CI can easily be converted to %cytolysis. The data clearly show larger 
differences in cytolysis efficiency when fewer effector cells were used.

Using xCELLigence to 
study BiTEs

Bispecific T cell engagers (BiTEs) and 
bispecific antibodies
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Figure 8. Impedance assessment of BiTE-mediated cytotoxicity. (A) Normalized CI plot for PC3 
target cells incubated with PBMCs at different E:T ratios without the BiTE. (B) Same E:T ratios as 
(A) but with 1 μg/mL anti-EpCAM/CD3 BiTE. (C) At E:T ratio of 10:1, different BiTE concentrations 
resulted in varied dynamic cytolysis of the target cells. (D) Same result from (C) showed as 
%cytolysis. (E) Example of BiTE concentration depended %cytolysis from E:T ratio 10:1 and 1.25:1. 
(F) KT50 comparison for result from (E). Significance analysis performed by one-way ANOVA. 
(*** p< 0.001; ** p< 0.01; * p< 0.05; NS = Not Significant; N.D. = Not Detected). This figure has been 
reproduced with permission from Cerignoli, F. et al. In vitro Immunotherapy Potency Assays Using 
Real-Time Cell Analysis. PLOS ONE 2018, 13(3), e0193498.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a 
copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative 
Commons, PO Box 1866, Mountain View, CA 94042, USA.
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By disrupting signaling pathways that normally suppress immune cell activation, 
checkpoint inhibitors enable immune effector cells to attack cancer cells 
more aggressively. From mechanistic validation of novel checkpoint targets 
to comparing the relative efficacy of two different checkpoint‑modulating 
antibody constructs, xCELLigence RTCA instruments help answer your questions 
efficiently under conditions of maximal physiological relevance.

Studies have shown that cancer cells are protected when PDL1 on the surface 
of cancer cells bind to PD1 expressed on activated cytotoxic T cells. This 
engagement leads to a decrease in cytotoxic activities and the production of 
cytokines such as interferon. PDL1/PD1‑blocking antibodies are now being used 
as treatment to recover cytotoxic T cell activity and interferon production to inhibit 
tumor growth.

Figure 9 demonstrates the xCELLigence RTCA monitoring the impact of an 
anti-PD-1 antibody on PBMC killing of prostate cancer PC3 cells. Target PC3 
cells are seeded in E‑Plates and allowed to attach and proliferate. Frozen PBMCs 
are thawed, activated by incubation with Staphylococcus enterotoxin B (SEB) 
superantigen, then added on top of the PC3 cells in the presence or absence 
of anti‑PD‑1 antibody. The effector:target ratio was 5:1. As shown in Figure 9A, 
PBMCs display a modest capacity for killing PC3 cells (blue trace), but killing 
is much more robust in the presence of the anti‑PD‑1 antibody (orange trace). 
Using the xCELLigence RTCA software, the primary data are readily converted to 
%cytolysis (Figure 9B), which helps elucidate the checkpoint inhibitor’s impact: 
earlier onset of target cell killing, increased rate of cytolysis, and a greater total 
extent of cell killing.

Using xCELLigence to study 
checkpoint inhibitors

Checkpoint Inhibitors

www.ols-bio.com
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The traditional oncology pharmacopeia of small molecules is rapidly being 
supplemented with biologics such as checkpoint inhibitors. It will soon also 
include cellular therapies, such as CAR‑T cells. With this expanding repertoire 
comes the possibility of boosting cancer killing efficacy by combining different 
modalities. The optimization of combination therapies would benefit from an 
assay platform that, by maintaining high sensitivity under physiologically relevant 
conditions, yields in vitro data that are predictive of in vivo behavior. Other 
desirable characteristics include an easy workflow and a high‑throughput format 
to enable diverse permutations of combination therapies so they can be analyzed 
simultaneously. xCELLigence RTCA meets all of the above criteria.

Using xCELLigence to study combination therapies

Figure 10 illustrates use of the xCELLigence RTCA to monitor the impact a 
combination of PD‑1 and CTLA‑4 checkpoint inhibitors have on PBMC killing of 
PC3 cells. In this experiment, target PC3 cells are seeded in E-Plates and allowed 
to attach and proliferate. Frozen PBMCs are thawed, activated by incubation with 
Staphylococcal enterotoxin B (SEB) superantigen, then added on top of the PC3 
cells in the presence or absence of 38 nM anti-PD-1 antibody and two different 
concentrations of anti‑CTLA‑4 antibodies. The effector:target ratio was 5:1. The 
killing efficacy of PBMCs varies dramatically from donor to donor, and, for this 
particular batch of cells, adding 38 nM anti-PD-1 did not enhance target cell 
killing. However, adding anti‑CTLA‑4 along with anti‑PD‑1 promoted target cell 
killing in a dose‑dependent manner (green and pink traces).

Figure 10. Anti-PD-1 and anti-CTLA-4 antibodies combination therapy. By analyzing cancer cell 
killing with high sensitivity and without the need for labels/modifications, the Agilent xCELLigence 
RTCA instruments allow effector and target cells to be studied under conditions that approximate 
human physiology more closely than other in vitro techniques. By monitoring combination 
therapy-induced target cell killing continuously, these instruments also do away with laborious 
endpoints, readily yielding cell killing data under many different conditions simultaneously.
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T cells can be genetically engineered to express a tumor antigen-specific T cell 
receptor (TCR) or a chimeric antigen receptor (CAR), composed of an intracellular 
signaling domain linked to an extracellular domain derived from a tumor‑specific 
antibody. The primary motivation for genetically modified T cells is to avoid 
the immune tolerance issues associated with nonautologous therapies and 
to produce T cells that efficiently target tumors without the need for de novo 
activation in people. The efficacy of this approach is highlighted by the convincing 
clinical research data that have emerged in recent years (for example, see 
Clin. Transl. Immunology 2014, 3(5), e16).

In Figure 11, the antitumor activity of NKG2D CAR‑T cells on triple‑negative breast 
cancer cells (TNBCs) is evaluated by xCELLigence RTCA in vitro. Results show 
that a time‑ and E:T ratio‑dependent cytotoxicity for 4‑1BB or CD27 costimulated 
NKG2D CAR-T cells against NKG2DL (+) MDA-MB-468, and MDA-MB-436 cells. As 
a negative control, untransduced T cells did not inhibit the growth of these cells.

Using xCELLigence to study 
genetically engineered T cells

Genetically engineered T cell‑mediated cell killing

http://www.ncbi.nlm.nih.gov/pubmed/25505964
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Figure 11. Recognition of human TNBC cells by NKG2D CAR T cells in vitro. (C) Normalized CI plot 
for target cells (AE17, BT549, MDA-MB-436, and MDA-MB-468) incubated with UNT or NKG2D CAR 
T cells at different E:T ratios for 24 hours. When seeded alone, target cells adhere to the plate and 
proliferate, increasing the CI readout (red lines). When T cells are added to target cells, NKG2CD 
CAR-T cells cause cell cytolysis and then a progressive decrease in CI. The Y-axis is the normalized 
CI generated by the RTCA software displayed in real time. The X-axis is the time of cell culture and 
treatment time in hours. Mean values of the CI were plotted ± standard deviation. (D) The CI plot is 
converted to %lysis by the Agilent xCELLigence immunotherapy software. 

This figure has been reproduced with permission from: Hali, Y. et al. Control of Triple-Negative 
Breast Cancer Using Ex Vivo Self-Enriched, Costimulated NKG2D CAR T Cells. Journal of 
Hematology & Oncology 2018, 11, 92.1

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a 
copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative 
Commons, PO Box 1866, Mountain View, CA 94042, USA.
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Heterogeneous antigen expression within a cancer cell population can lead to an 
incomplete response to CAR‑T cell therapy. While cancer cells that express the 
targeted antigen are killed off, cells that lack the antigen continue propagating 
undeterred. To minimize this phenomenon, known as antigen/tumor escape, 
there is growing interest in targeting multiple tumor cell antigens simultaneously. 

Figure 12 compares different scenarios where CARs targeting the HER2 and 
IL13Rα2 antigens were expressed in separate T cells (CARpool), as distinct 
proteins within the same T cell (biCAR), or as a single fusion protein within T cells 
(TanCAR). When incubated with glioblastoma target cells, each of these CART 
approaches displayed differential killing capacity and kinetics (Figure 13). These 
nuances in serial killing behavior are readily elucidated by continuous impedance 
monitoring but would go undetected in traditional endpoint assays.

Figure 12. Using Agilent xCELLigence to monitor killing of the glioblastoma cell line U373 by 
CAR-T cells targeting either one or both of the antigens HER2 and IL13Rα2. In the figure legend: 
U373 = target cell line alone; NT = target cells treated with nontransfected T cells (not expressing 
a CAR); IL13Rα2 = target cells treated with T cells expressing a single CAR targeting IL13Rα2; 
Her2 = target cells treated with T cells expressing a single CAR targeting Her2; see the text for 
descriptions of CARpool, biCAR, and TanCAR. 

Republished with permission of J. Clin. Invest., from "Tandem CAR T Cells Targeting HER2 and 
IL13Rα2 Mitigate Tumor Antigen Escape," Hegde, M. et al. 2016 Aug 1, 126, 8, 3036–52, 2019; 
permission conveyed through Copyright Clearance Center, Inc.
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– Webinar recording: Modeling Anti-tumor Function of Human T Cells with
xCELLigence RTCA eSight

– Agilent xCELLigence application note: Metabolic Preconditioning Improves
Engineered T Cell Fitness and Function

– Agilent xCELLigence brochure: Measure Cell Movement, Health, and
Function with xCELLigence RTCA eSight
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Macrophages are important effector cells of innate immunity. Depending on 
the tissue microenvironment, tumor‑associated macrophages (TAMs) can 
differentiate into either cytotoxic (M1) or tumor‑promoting (M2) states.

While cytotoxic M1 macrophages are typically induced by IFN-γ alone or in 
concert with microbial products, tumor‑promoting M2 macrophages are induced 
by IL-4, IL-13, IL-10, IL-21, TGFβ, immune complexes, or glucocorticoids.

A recent study has shown the secreted glycoprotein thrombospondin 1 (TSP1) is 
a positive modulator of innate antitumor immunity by increasing M1 macrophage 
recruitment and stimulating reactive oxygen species (ROS)‑mediated tumor 
cell killing (Figure 13). These conclusions are drawn, in part, using xCELLigence 
RTCA impedance monitoring to evaluate the effect of TSP1 on macrophage/
monocyte activity when cocultured with MDA-MB-231 breast adenocarcinoma 
target cells. The %cytolysis data clearly indicate that the tumoricidal activity of 
both differentiated U937 human monocytes (A) and activated ANA-1 murine 
macrophages (B) are enhanced in the presence of TSP1.

Figure 13. Secreted glycoprotein TSP1 increases macrophage/monocyte-mediated tumoricidal 
activity. MDA-MB-231 breast adenocarcinoma target cells were seeded in Agilent E-Plates and 
incubated for up to 24 hours. Differentiated U937 human monocytes (A) or activated ANA-1 
murine macrophages (B) were then added in the presence or absence of soluble TSP1. This 
figure was adapted from: Cancer Res. 2008, 68(17), 7090–9.4 Note that the RT-CES described 
in this publication was Agilent's first-generation RTCA system, and has been rebranded as 
Agilent xCELLigence RTCA.

Reprinted by permission from the American Association for Cancer Research: Martin-Manso 
G, et al. Thrombospondin 1 Promotes Tumor Macrophage Recruitment and Enhances Tumor 
Cell Cytotoxicity of Differentiated U937 cells. Cancer Res. 2008 Sep 1, 68(17), 7090–9. DOI: 
10.1158/0008-5472.CAN-08-0643
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NK cell‑mediated cytolysis

NK cells are a type of cytotoxic lymphocyte that play a critical role in the innate 
immune system, primarily by recognizing and destroying virus‑infected cells. 
NK cells express several activating and inhibitory receptors that work in concert 
to distinguish infected or diseased cells from normal cells. Once they bind to a 
target cell, NK cells become activated and secrete membrane‑permeabilizing 
proteins (perforins) and proteases (granzymes), which collectively cause target 
cell death through apoptosis or osmotic lysis. NK cells also participate in a 
specialized type of cell killing known as antibody‑dependent cell‑mediated 
cytotoxicity (ADCC). In ADCC, the CD16 low affinity IgG receptor of NK cells 
enables them to recognize infected antibody‑coated cells that need to be 
destroyed. These mechanisms used by NK cells to recognize and destroy 
infected cells are also critical for killing cancer cells. Unlike T cells, which 
must be activated by antigen‑presenting cells before they recognize tumors, 
NK cells spontaneously lyse certain types of tumor cells in vivo and in vitro 
without requiring immunization or pre‑activation. Similar to virally infected 
cells, tumor cells may also down‑regulate their MHC‑1 expression. Recognizing 
this change in expression, NK cells destroy such cancer cells through 
perforin/granzyme‑mediated lysis. Owing to this capacity, NK cells are being 
investigated for the purposes of immunotherapy.
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Figure 14 shows use of the xCELLigence RTCA to measure target tumor cell 
killing by NK cells at low, physiologically relevant E:T ratios in vitro. Results show 
that AZD1775, a small molecule inhibitor of WEE1 kinase, was able to sensitize 
tumor cells to NK cell lysis.

Figure 14. Target cell killing by KIL at low E:T ratios is enhanced following WEE1 kinase inhibition. 
(A) Loss of CI of MOC2 oral carcinoma cells following the addition of KIL at increasing E:T ratios 
was measured through real-time impedance analysis. The vertical line at 18 hours indicates the 
time at which KIL was added. Control cells were exposed to KIL media alone. (B) %Loss of CI at 
12 hours after the addition of KIL (black line) or sorted WT B6 NK cells (gray line) quantified on the 
left. On the right, for comparison, KIL (black line) or sorted WT B6 NK cells (gray line) were used to 
induce indium release in a standard 12-hour radioactive compound release assay. (C) %Loss of CI 
at 72 hours after addition of KIL (black line) or sorted WT B6 NK cells (gray line) quantified. For B 
and C, * indicates significantly enhanced killing with KIL cells compared to sorted WT B6 NK cells. 
(D) Loss of MOC2 CI following the addition of KIL at low E:T ratios in the presence of AZD1775 
(250 nM) or DMSO (volume equivalent). When AZD1775 was present, MOC2 cells were plated in 
drug at the start of the assay. Maximum loss of CI was achieved by addition of triton to some wells. 
%Loss of CI 48 hours after the addition of KIL to MOC2 cells is quantified on the right. (E) %Loss 
of CI of MOC2 cells in the presence (AZD1775 250 nM) or absence (DMSO volume equivalent) of 
WEE1 kinase inhibition 12 hours after the addition of KIL at the indicated E:T ratios quantified on 
the left. On the right, for comparison, the same was measured in a standard 12-hour radioactive 
compound release assay. (F) %Loss of CI of MOC2 cells 48 hours after the addition of KIL. 
(G) Impedance analysis of MOC2 cells alone (5 × 103 cells/well) compared to media or KIL cells 
alone up to an E:T ratio equivalent of 50:1 (2.5 × 105 KIL/well). Results presented are representative 
of three independent experiments with similar results. (*, p <0.05; ***, p <0.001). 

This figure has been reproduced with permission from: Friedman, J. et al. Inhibition of WEE1 
Kinase and Cell Cycle Checkpoint Activation Sensitizes Head and Neck Cancers to Natural Killer 
Cell Therapies. J. Immunother. Cancer. 2018, 6, 59.

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a 
copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative 
Commons, PO Box 1866, Mountain View, CA 94042, USA.
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In Figure 15, xCELLigence RTCA was used to quantitatively measure the cytolytic 
activity of NK cells in real time. After growing adherent breast cancer MCF7 
cells in the bottom of E‑Plate wells, NK‑92 cells were added at different effector 
to target (E:T) ratios. The data clearly demonstrate NK‑92 cell‑mediated lysis of 
the MCF7 cells in a dose‑ and time‑dependent manner. Real‑time impedance 
monitoring by the xCELLigence system is sensitive enough to detect target cell 
killing even at low E:T ratios. For plotting purposes, %cytolysis is readily calculated 
using a simple formula:

%Cytolysis =
(Cell Indexno effector – Cell Indexeffector)

Cell Indexno effector

× 100

Figure 15. Real-time monitoring of NK-92 cell-mediated cytolysis of MCF7 breast cancer cells. 
Adherent MCF7 target cells were grown in multiple wells of an Agilent E-Plate. Different quantities 
of NK-92 cells were added to each well, and impedance was monitored continuously for the next 
~20 hours (A). The time-dependent cytolytic activity of NK-92 cells at different E:T ratios (B) was 
calculated as described above. Figures adapted from Agilent application note Label-Free Assay for 
NK Cell-Mediated Cytolysis.
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Oncolytic virotherapy is a promising cancer treatment that uses a 
replication‑competent virus to selectively infect cancer cells, cause cytotoxicity, 
and generate antitumor immunity. This approach has seen major advances in 
recent years using wildtype (WT) and genetically engineered viruses.

Analyzing cancer cell killing with high sensitivity and without the need for 
labels/modifications, the xCELLigence RTCA instruments allow the interaction 
between viruses and target cells to be studied under conditions that 
approximate human physiology more closely than other in vitro techniques. 
By monitoring target cell killing continuously, these instruments also eliminate 
laborious endpoints and readily yield cell killing data under many different 
conditions simultaneously.

Figure 16 shows the use of xCELLigence RTCA to monitor killing of A549 lung 
cancer cells by a chimeric adenovirus (Enadenotucirev, EnAd). This infects 
cells by binding to CD46 or desmoglein, which are widely expressed on many 
carcinoma cells. In a potency analysis, the cytotoxicity (killing kinetics) of EnAd at 
a range of concentrations is compared with WT adenoviruses Ad11p and Ad5. At 
the highest concentration (red, 500 particles per cell (PPC)), EnAd and Ad11p are 
seen to cause complete cell killing (cell index decreasing to zero) 36 to 48 hours 
after infection. However, at lower virus concentrations (0.8 to 20 PPC) EnAd is 
more potent than Ad11p, displaying an earlier onset of cytotoxicity and a more 
rapid completion of cytolysis. When compared with EnAd and Ad11p, WT Ad5 is 
much less efficient at killing the cancer cells, requiring five days to achieve full cell 
killing even at the highest virus concentration.

These data highlight the ability of xCELLigence RTCA assays to quantitatively 
capture differences in the potency of different oncolytic viruses.

Oncolytic viruses
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Figure 16. Killing of A549 lung cancer cells by different adenoviruses. The black arrows indicate 
the time of virus addition. Virus concentrations are listed as PPC. Figure adapted from: Mol. Ther. 
Oncolytics 2016 Dec 10, 4, 18–30.2

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a 
copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative 
Commons, PO Box 1866, Mountain View, CA 94042, USA.
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By seeking out and destroying infected cells directly, CD8+ T lymphocytes play 
a critical role in adaptive immune response. Every CD8+ T cell clone expresses 
a unique variant of specialized receptor, the T cell receptor (TCR), that can 
recognize and bind to a specific antigenic peptide presented by MHC class I 
(MHC‑I) molecules on the surface of target cells. Engaging infected or cancerous 
cells using MCH‑1 complex causes CD8+ cells to secrete perforin and granzymes, 
leading to lysis of the target cell.

Tumor cells typically acquire extensive mutations in their genomes, including 
the genes of key regulatory and signaling proteins. When cleaved, processed, 
and presented by MHC molecules on the surface of antigen presenting cells, 
these mutated proteins can elicit a cellular immune response. This explains 
T lymphocytes being found inside tumors. Some cancer vaccines exploit this 
tumor targeting capacity of T cells by priming the cellular arm of the adaptive 
immune response to target cancer cells expressing proteins that are mutated or 
expressed at abnormal levels.

While in some contexts, quantifying the number of antigen‑specific CD8+ T cells 
in samples using assays such as ELISpot or flow cytometry is useful, there is 
often a critical need to assess the functional cytotoxicity of these cells through 
killing assays. Measuring cytolytic activity through the chromium‑51 (51Cr) release 
assay has long been the gold standard for evaluating CD8+ T cell responses.

Figure 17 shows SKBR-3 breast cancer cells expressing the HER2/Neu protein 
prelabeled with 51Cr. They are then co‑incubated with increasing amounts of 
a CD8+ T cell clone. This expresses a TCR specific for an antigenic peptide of 
HER2/Neu and target cell killing is detected by release of 51Cr into the medium. 
An xCELLigence RTCA system performs this assay without prelabeling the target 
cells. The RTCA system quantitatively detects the cytolytic activity of CD8+ T cells 
against the SKBR-3 target cells in a manner that depends on time and number of 
CD8+ T cells added (Figure 17A). Side‑by‑side comparison with the 51Cr release 
assay shows that the sensitivity and dynamic range of the xCELLigence RTCA 
assay surpass that of 51Cr (Figure 17B). The preclusion of radiolabeling and the 
kinetic data provided by RTCA (including the onset of cytolysis and the rate of 
tumor cell killing) make this assay especially attractive. 

T Cell‑mediated cytolysis
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Figure 17. CD8+ T cell-mediated cytolysis of SKBR3 tumor cells. In a dose-dependent manner, 
CD8+ T cell addition causes the real-time impedance traces to decrease in value, indicative of 
a reduction in the number, size, or attachment quality of the SKBR3 tumor cells (A). Plotting the 
percentage of tumor cell lysis, as determined by an Agilent xCELLigence RTCA versus the standard 
51Cr release assay, demonstrates RTCA to be the more sensitive method (B). Figure adapted from: 
J. Vis. Exp. 2012 Aug 8, (66), e3683.10
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Many peer‑reviewed studies have been published over the past decade, 
establishing xCELLigence RTCA as a prime method of studying immunotherapies 
that target solid/adherent cancers. However, approximately 10% of all cancers 
are liquid in nature, nonadherent, and cannot be monitored directly by the 
standard impedance assay. Moreover, because they are readily accessible 
within the blood stream and are not confounded by the microenvironment 
complexities/heterogeneities associated with solid tumors, liquid cancers are 
prominent immunotherapy targets. To help accelerate research in this area, 
Agilent has developed xCELLigence RTCA immunotherapy kits that enable 
impedance-based killing assays to be performed on liquid tumor targets. Five kits 
are available, enabling either B cell lines or the K562 myelogenous leukemia 
line to be used as targets. In these assays, the wells of E‑Plates are precoated 
with anti‑CD40 or anti‑CD19 (for B cells), or anti‑CD29 or anti‑CD71 antibody 
(for K562 cells), as well as anti-CD9 antibody (for NALM6, RPMI8226 cells). This 
enables these cells to be immobilized on the plate bottom before treatment with 
effector cells, antibodies, small molecules, and more.

Figure 19 illustrates the utility of the xCELLigence RTCA immunotherapy kit for 
B cell killing (anti‑CD40) assays. Whereas antibody‑immobilized B cells generate 
a robust impedance signal and proliferate to the point of confluence (resulting 
in a plateaued impedance signal), the growth of untethered B cells is essentially 
undetectable (Figures 18A and 18B). With or without anti‑CD40 coating of the 
wells, effector cells such as the NK‑92 cells used here produce minimal signal 
on their own (Figure 18B). Addition of NK‑92 cells on top of immobilized B cells 
results in target cell death in a dose‑dependent manner (Figure 18C). Killing is 
easily detected even at low effector:target ratios. This sensitivity greatly exceeds 
that of traditional release assays which require high effector:target ratios that 
are not physiologically relevant. The tethering and killing behaviors shown in 
Figures 18B and 18C have been observed in all three of the B cell lymphoma lines 
tested (Daudi, Raji, and Ramos), for multiple effector cell types (NK, T, and CART), 
and for combination therapies (CART + checkpoint inhibitors). Experiments 
looking at killing of human blood‑derived B cells by the effector cells isolated from 
the same person are in progress.

Liquid tumor killing assays
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An important question is whether the physical immobilization of B cells through 
antibody tethering affects the efficiency with which they are killed. To assess this, 
side‑by‑side four‑hour assays are performed for NK‑92 cell‑mediated killing of Raji 
B cells that are immobilized (analyzed by xCELLigence RTCA) or in suspension 
(analyzed by flow cytometry). As shown in Figure 18D, the killing trends observed 
by these two methods show high correlation, with the magnitude of %cytolysis 
varying minimally. This is consistent with the large number of publications 
showing that xCELLigence data consistently recapitulate data obtained by 
traditional assays.

Figure 18. The Agilent xCELLigence immunotherapy kit for monitoring B cell killing. (A) Precoating 
the wells of Agilent E-Plates with B cell-specific antibody (anti-CD40) enables B cells to proliferate 
on, and be detected by, the sensors. (B) Controls showing the selective proliferation of Daudi 
B cells on electrodes coated with anti-CD40 antibody. As expected, with or without anti-CD40 
coating nonadherent NK-92 effector cells produce minimal signal. Error bars are standard 
deviation. (C) The efficiency with which Raji B cells are killed depends on the number of NK-92 
cells added per well. (D) The impact of B cell immobilization on killing efficiency. Raji B cells, 
either immobilized by antibody or in suspension, were treated with different numbers of NK-92 
cells. %Cytolysis was determined after four hours of treatment by xCELLigence (tethered) or flow 
cytometry (in suspension).
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In a second example of liquid tumor cell killing, Figures 19A and 19B show the 
destruction of K562 cells (tethered to E‑Plate well bottoms using anti‑CD29 
antibody) by NK‑92 cells. As expected, K562 killing increases as a function of time 
and effector cell concentration. Similar to the B cell killing assay, the destruction 
of K562 cells is detectable even at low effector:target ratios.

Figure 19. The Agilent xCELLigence immunotherapy kit for monitoring K562 cell killing. (A) K562 
cells, immobilized on the bottom of Agilent E-Plate wells by anti-CD29 antibody, are destroyed by 
NK-92 cells in a time- and dose-dependent manner. (B) Data from (A) replotted as %cytolysis as a 
function of time. Error bars in both are standard deviation.

The liquid tumor killing assays described here are being used in industrial and 
academic labs for evaluating/optimizing combination therapies. They are also 
used for developing adoptive cell therapies and engineering antibodies. Beyond 
the arena of R&D, these liquid tumor killing assays may be used for functional 
validation/quality control of manufactured immuno‑oncology therapies.
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